ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration Hansgrohe Group

Publisher Institut Bauen und Umwelt e.V. (IBU)
Programme holder Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-HAN-20220300-ICC2-EN

Issue date 24.02.2023 Valid to 23.02.2028

Basin Faucets Hansgrohe Group

Institut Bauen und Umwelt e.V.

www.ibu-epd.com | https://epd-online.com

1. General Information

Hansgrohe Group	Basin Faucets
Programme holder	Owner of the declaration
IBU – Institut Bauen und Umwelt e.V.	Hansgrohe Group
Hegelplatz 1	Auestr. 5-9
10117 Berlin	77761 Schiltach
Germany	Germany
Declaration number	Declared product / declared unit
EPD-HAN-20220300-ICC2-EN	One (1) piece of an average basin faucet incl. packaging
This declaration is based on the product category rules:	Scope:
Fittings and showers, 01.08.2021	This average EPD was determined on the basis of a weighted average of
(PCR checked and approved by the SVR)	production volume from
	2021 and relates to the plants in Offenburg and Schiltach, Germany, Shanghai, China and Alpharetta, USA. This average EPD is valid for the
Issue date	whole product group of chrome plated basin faucets. The EPD was formed
24.02.2023	from >94% of the products involved in the sales quantity.
	The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer
See 11 - 2	information, life cycle assessment data and evidences.
Valid to	·
23.02.2028	The EPD was created according to the specifications of EN 15804+A2. In the following, the standard will be simplified as <i>EN 15804</i> .
	Verification
	The standard EN 15804 serves as the core PCR
	Independent verification of the declaration and data according to ISO 14025:2011
	internally X externally
Man Roben	
DiplIng. Hans Peters	_
(Chairman of Institut Bauen und Umwelt e.V.)	
	ρ
* Paril	
	Nacem ADIBI
Florian Pronold (Managing Director Institut Rayon and Umwelt o V.)	Dr Naeem Adibi,
(Managing Director Institut Bauen und Umwelt e.V.)	(Independent verifier)

2. Product

2.1 Product description/Product definition

Basin faucets

essentially comprise of a metal housing in most cases made of brass, a plastic

valve with ceramic discs and several assembly parts of various materials. The faucet

surface is usually chrome-plated by means of various galvanic process stages.

Some basin faucets are operated mechanically by handles and some electronically by sensors.

- EN 15091:2014: Sanitary tapware Electronic opening and closing sanitary tapware
- EN 60335-1:2012: Household and similar electrical appliances - Safety - Part 1 Sanitary tapware – Thermostatic mixing valves (PN 10)
- ISO 3822: Acoustics Laboratory tests on noise emission from appliances and equipment used in water supply installations

For the use

and application of the products the respective national provisions at the place

of use apply, in Germany for example the building codes of the federal states

and the corresponding national specifications.

The products comply with

the applicable standards and regulations listed below. 2.1.1 Mechanically operated basin faucets Following

standards depending on the operating mechanism may apply to faucets and roughs

to prove product safety:

- EN 816:2017: Sanitary tapware Automatic shut-off valves PN 10
- EN 817:2008: Sanitary tapware Mechanical mixing valves (PN 10)
- EN 200:2008: Sanitary tapware Single taps and combination taps for water supply systems of type 1 and type 2
- ISO 3822: Acoustics Laboratory tests on noise emission from appliances and equipment used in water supply installations

Following

European directives and regulations may apply to electronic operated taps.

depending on their functions:

- 2011/65/EU (RoHS)
- 2014/30/EU (EMC)
- 2014/53/EU (RED)
- 2014/35/EU (LVD)
- 2009/125/EC (Ecodesign)
- 1275/2008/EC (Standby)

2.2 Application

2.2.1 Manual basin faucets are plumbing fixtures that mix hot and cold

water, shut off water, and regulate the amount of water. They are mechanically

operated by handles and are used for hand washing in bathrooms and toilets.

2.2.2 Electronical basin faucets are plumbing fixtures that mix hot and cold water, shut off

water, and regulate the amount of water. They are automatically operated by

sensors and are used for hand washing in bathrooms and toilets.

2.3 Technical Data

The technical specifications of the products within the scope of the EPD shall be listed, including the reference to the test methods/test standards for each specification.

For products with CE marking, the technical specifications must be specified in accordance with information in the declaration of performance. The properties relevant to the product should be specified in the table below. If no information is given for properties, an explanation must be given in the background report to the EPD as to why the property is not relevant to the product.

Constructional data

2.1.2

Electronically operated basin faucets

Following

standards apply to electronic operated taps to prove product safety:

Name	Value	Unit
Maximum load temperature permanent operation	65	°C
Maximum load temperature temporary operation	90	°C
Flow rate (indications for pressure range of 1-3 bar)	Depending on the product 0,09 to 1,2	m ³ /h
Sound emissions	< 30	dB

Performance

data of the product with respect to its characteristics in accordance with the

relevant technical provision (no CE-marking).

2.4 Delivery status

The basin faucets

are delivered singularly packaged. The packaging is customized to the size of

the product and supplies. Customers can order single products or multiple

products with outer packaging. The products with the smallest and the largest volume have dimensions between 155x85x285 mm and 227x247x460 mm.

2.5 Base materials/Ancillary materials

The material composition (incl. packaging) of an average basin faucet is as follows:

Name	Value	Unit
Brass	48.9	%
Cardboard, Paper	18.2	%
Zinc	11.0	%
Polyphenylene	8.3	%
Other Plastics	7.9	%
Stainless Steel	4.1	%
Other Materials	0.9	%
Steel	0.5	%

The parts which are made of brass contain between 0.2 and 1.4% lead.

This product

contains substances listed in the candidate list (date: 17.12.2021) exceeding

0.1 percentage by mass: Lead (CAS number 7439-92-1) as a component of the brass

alloy has been on the candidate list of the Reach Regulation (Regulation (EC)

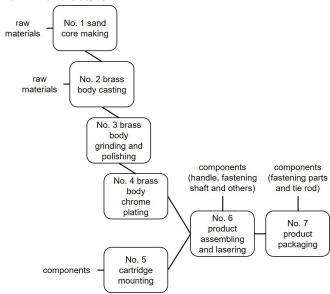
No. 1907/2006) since 27.06.2018.

This

product/article/at least one partial article contains other CMR substances in

categories 1A or 1B which are not on the candidate list, exceeding $0.1\,$

percentage by mass: no.


Biocide

products were added to this construction product or it has been treated with

biocide products (this then concerns a treated product as defined by the (EU)

Ordinance on Biocide Products No. 528/2012): no.

2.6 Manufacture

No. 1: The sand core for the base body is made.

No. 2: The

body of the faucet is cast from brass using the sand core.

No. 3:

After casting, the brass body is grinded and polished.

No. 4: To protect

the product and make it durable, the body is galvanized with chrome.

No. 5: Meanwhile,

the individual parts of the cartridge are assembled.

No. 6: The

product parts (chrome plated brass body, cartridge, chrome plated handle and others) are assembled.

No. 7: The

preassembled product is packed together with the remaining components (like fastening parts).

Any production

waste generated is disposed accordingly. In

individual cases, the production may differ slightly from the procedure (for

example, if the brass body is purchased and not manufactured in-house).

2.7 Environment and health during manufacturing

Hansgrohe SE tries to keep the

impact on people and the environment as low as possible when manufacturing its products.

Hazards at workplaces are regularly assessed and reduced to a minimum.

For example, in basic production,

sawing or grinding work is mainly carried out by robots, and in electroplating,

chemicals are dosed automatically via appropriate pump stations.

Emissions that are hazardous to

health are extracted directly at the source and cleaned by filter systems.

Workplace and emission limits are

regularly monitored and are far below the prescribed limits.

To reduce environmental impact,

water and production waste are recycled wherever possible.

In addition, all production

sites are certified according to the DIN EN ISO standards 14001 (environment),

50001 (energy), 45001 (occupational health and safety) and 9001 (quality).

Continuous improvement of environmental and occupational safety performance is

thus guaranteed.

2.8 Product processing/Installation

The basin faucets

are installed to a basin with fastening bolts, centering rings and shaft

fastenings (tool: standard screwdriver).

The flex

hoses are connected (tool: standard wrench).

If it is

included in the product, the drain is mounted on the basin and tested for leaks

(tool: standard screwdriver).

The jet

regulator is inserted and tested with water (tool: standard

wrench).

In the end

the water temperature is adjusted by setting the cartridge (tools: standard

hexagonal offset screwdriver).

2.9 Packaging

For product

protection the basin faucets are individually packed in a cardboard box, which

consists of approximately 80% recycled material. The cardboard is always

printed with lead-free ink and in some cases additionally coated with clear

topcoat. The inlay of the packaging consists of folded cardboard, fiber form or

plastic bags, depending on the product.

The

packaging can be fully recycled.

ΑII

packaged products fit on a reusable euro pallet.

2.10 Condition of use

To protect

the basin faucets and make them durable, the body and handle are made of

chrome-plated metal. Nevertheless, there are no unhealthy contaminants in the

water and drinking water quality is guaranteed. To ensure the longevity of the

product, it should be used daily and cleaned regularly.

2.11 Environment and health during use

Our

products do not emission any contaminants or substances that are harmful to the

environment or health during the use phase.

2.12 Reference service life

The quality and durability of our basin faucets is designed for a product

life of about 20 years. Which on average is approximately the duration of use

by the consumers. With few exceptions, all products have a five-year warranty. Furthermore, an after-sale service warranty of 15 years is provided.

2.13 Extraordinary effects

Fire

The

products are not classified as building materials (building products) and are

not subject to DIN 4102 and EN 13501-1.

Fire protection

Name	Value
Building material class	
Burning droplets	
Smoke gas development	

Water

If a room in which the products

offered by Hansgrohe are installed is flooded with water, the electronic

faucets may be destroyed. All other products are not affected in their

function.

Mechanical destruction

If the surface of the coating is

destroyed by a mechanical stress, there is a possibility of corrosion.

In the event of mechanical

damage, the products may need to be replaced due to possible sharp cut edges.

2.14 Re-use phase

The basin faucets are not taken back by the manufacturer for the purpose of reuse. Users

can disassemble the products repeatedly within the reference utilization period

and reuse it elsewhere.

2.15 Disposal

The waste code of the product is AVV 20 03 01. Disassembly of the products consists of the same steps as assembly, in

reverse order.

All metal

components can be recycled (as scrap).

All plastic

components have a high calorific value and can be sent for thermal recycling.

ln

countries where no thermal recycling or substance recycling is established.

disposal takes place via the waste incineration plant.

2.16 Further information

Additional

information about our products can be found at https://www.hansgrohe.com.

3. LCA: Calculation rules

3.1 Declared Unit

The results of

this EPD are valid for the following functional unit:

Provide

sanitary function for one (1) average basin faucet unit, allowing the distribution of sanitary water with a

regulation of the flow rate and temperature, used in accordance with

the manufacturer's recommendations for a 20-year life, following the manufacturer's operating instructions. An average conditioned basin faucet is

considered the baseline flow.

Weighted

averaging based on production tonnages in 2021 is chosen as basis for creating

the environmental profile. 405 different basin faucets were considered.

Functional unit

Name	Value	Unit
Declared unit	1	рсе.
Functional unit	1	рсе.
Functional unit with packaging	2.14	kg
Packaging	0.41	kg
Weight range of the products examined	0.86 - 4.5	kg

Other declared units are allowed if the conversion is shown transparently.

For IBU core EPDs (where clause 3.6 is part of the EPD): for average EPDs, an estimate of the robustness of the LCA values must be made, e.g. concerning the variability of the production process, geographical representativeness and the influence of background data and preliminary products

compared to the environmental impacts caused by the actual production.

3.2 System boundary

This

representative EPD follows the EPD type "cradle to gate - with options". The following life cycle modules are declared:

Modules A1-A3:

The

product stage begins with considering the production of the necessary raw

materials and energies, including all corresponding upstream chains and the

actual procurement transports. Furthermore, the entire manufacturing phase

was mapped, including the treatment of production waste until the

end-of-waste status (EoW) was reached.

Green electricity from hydropower is used for the manufacturing processes in Germany. US electricity mix is used for the US production site. Chinese electricity mix is used for the Chinese production site, although electricity from photovoltaic is partly used there.

Module

A4:

ΔII

distribution transports to the customers were considered.

Module

A5:

This

module covers the installation process with the corresponding

packaging waste generated that needs to be disposed.

Modules B1 & B3-B5:

These modules were considered, but evaluated as not relevant for the products and considered as zero.

Module B2:

Maintenance

expenses are declared in this module and consist of weekly cleaning expenses, cartridge and battery replacement.

Module B6:

_.

This

module considers the energy input required to bring water to a certain

temperature for the use of a gas low temperature boiler (scenario B6/1) and for the use of an electric instantaneous water heater (scenario B6/2).

Module

B7:

This

module considers the water consumption that can be expected depending on the

function of the product family.

Modules

C1-C4:

The modules include the environmental impacts for dismantling of the products and the treatment of the waste fractions until the end-of-waste status (EoW) is reached, including the associated transports at the end of the product life cycle.

Module D:

Identification

of the benefits and costs of the product outside the system boundary. For waste,

paper and plastics, these consist of energy credits from thermal utilization (A3,

A5 and C3) in the form of the average European electricity mix or thermal energy

from natural gas. Recycling of paper, plastic and metal scrap results in

credits of the respective raw materials for the primary material portion of the input. The loads of the waste incineration and recycling processes are assigned to the respective modules (A3, A5 and C3) and not to module D.

3.3 Estimates and assumptions

Energy and water consumption, material amount for coating as well as waste during production could only be determined on

concrete, existing products and not on the average product. The highest value of all inputs and outputs for energy, waste and coating of the top seller, the lightest and the heaviest

product was used for the calculation of energy, water, waste

and coating. For the incineration with

energy recovery (thermal and electric) of waste, an r1 value of > 0.6 is

assumed. The net efficiency for the average waste incinerated is between 38 % and 44 %, depending on the type of waste respectively the disposal data set.

3.4 Cut-off criteria

The effect

associated with the neglected mass shares is less than 5% of the effect

categories per module. The minimum limit of 1% total mass and the use of

renewable and nonrenewable primary energy is not exceeded.

3.5 Background data

The LCA

software *GaBi* 10.6 was used to model the life cycle. The entire manufacturing

process, as well as energy consumption, were modelled on the basis of

manufacturer specific data.

However, generic background datasets were used for the upstream and downstream

processes. The majority of the background datasets used were taken from the

current version (2021.2) of the *GaBi* database. *Ecoinvent* Version 3.6 (2019)

datasets were only used when suitable *GaBi* datasets were not available.

3.6 Data quality

The background

datasets used for accounting purposes mainly originate from the respective updated GaBi databases at the time of calculation. The data for the examined products was captured on

the basis of evaluations of internal production and environmental data, the collection of LCA relevant data within the supply chain, as well as the evaluation of relevant data for the energy supply. The collected

data were checked for plausibility and consistency. Good representativity can be assumed.

For the

assessment of the variability of the results, all products were balanced in

addition to the average product. See at chapter 6 for explanation of the variability.

3.7 Period under review

Life cycle assessment data were collected in 2021.

3.8 Geographic Representativeness

Land or region, in which the declared product system is manufactured, used or handled at the end of the product's lifespan: Global

3.9 Allocation

For the production process nearly all raw materials, precursors and supplies could be assigned to the declared product. Energy, water, galvanization process and production waste were assigned to the highest value of either the heaviest, lightest or most sold product of the product group. No byproducts are produced and no allocation is required. Some of the brass losses from brass processing in module A3

are directly reused by Hansgrohe and are modelled as a closed loop. Another part of the brass losses (brass particles and dusts) is disposed of as waste (without debits and credits). Credits for plastics, paper and cardboard recycled in A5 and metallurgical waste in C3 are credited in module D. Credits for the energy recovery of incinerated production waste in A1-3, paper, cardboard and plastics in A5 and plastics and other materials in C3 are credited in module D.

The loads for waste water treatment and waste disposal of core sand, waste oil and hazardous waste from the manufacturing phase are allocated to module A3.

Packaging:

For paper and cardboard, recycling (91 %) and energy recovery (9 %) are considered on a pro rata basis. For plastic, a proportionate recycling (52 %), energy recovery (48 %) considered, based on *Eurostat*.

Deconstructed product at the end of life: Since the product is predominantly made of metal, it is assumed that most of its metallic components are recycled. 95 % of the non-metallic components are incinerated with energy recovery and 5 % are disposed in landfill. For the metal components, it is assumed that 90 % are sent for material recycling, 5 % for incineration with energy recovery (C3) and 5 % are disposed in landfill (C4).

3.10 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account.

The used background database has to be mentioned.

4. LCA: Scenarios and additional technical information

Characteristic product properties of biogenic carbon

The biogenic carbon content quantifies the amount of biogenic carbon in a construction product leaving the factory gate, and it shall be separately declared for the product and for any accompanying packaging.

If the total mass of biogenic carbon containing materials is less than 5 % of the total mass of the product and accompanying packaging, the declaration of biogenic carbon content may be omitted. The mass of packaging containing biogenic carbon shall always be declared.

Information on describing the biogenic Carbon Content at factory gate

The biogenic carbon content was calculated based on the factors from the

Thünen Intitute.

Name	Value	Unit
Biogenic carbon content in accompanying packaging	0.15	kg C

Note: 1 kg of biogenic carbon is equivalent to 44/12 kg of CO_2 .

The following technical information is a basis for the declared modules.

Transport to the building site (A4)

manapart to the manual growth (711)		
Name	Value	Unit
Transport distance (Truck)	439	km
Capacity utilisation (including empty runs) (Truck)	55	%
Transport distance (Container Ship)	6871	km
Capacity utilisation (Container Ship)	80	%

Installation into the building (A5)

Except of fitting grease, no

additional resources or energy are required for the installation. The packaging is disposed

either by recycling or incineration.

Name	Value	Unit
Packaging (Paper, cardboard and plastic)	0.407	kg
Grease	0.01	kg

Maintenance (B2)

For

module B2, it is assumed that a weekly cleaning of the product takes place,

with 0.5 liter of water containing 1.5% soap.

The cartridge is

replaced once during its service life. And the battery of the electronic basin faucets must be replaced every two years (electronic basin faucets

comprise 0.5% of the total basin faucets).

Name	Value	Unit
Maintenance cycle (cleaning)	1040	Number/RSL
Water consumption/Cycle weekly (cleaning)	0.5	Liter/cycle
Soap concentration (cleaning)	1.5	%
Water consumption (cleaning)	0.52	m ³
Auxiliary Soap/Tensides (cleaning)	7.8	kg
Maintenance Cycle (battery replacement)	10	Number/RSL
Battery Lithium 6V (battery replacement)	0.0021	kg/RSL
Maintenance Cycle (cartridge replacement)	1	Number/RSL
Cartridge (cartridge replacement)	0.0581	kg/RSL

In case a **reference service life** according to applicable ISO standards is declared then the assumptions and in-use conditions underlying the determined RSL shall be declared. In addition, it shall be stated that the RSL applies to the reference conditions only.

The same holds for a service life declared by the manufacturer. Corresponding information related to in-use conditions needs not be provided if a service life taken from the list of service life by *BNB* is declared.

Service life

Hansgrohe

SE declares a Service Life of 20 years as an empirical value for the basin faucets when used in accordance with the care instructions. This value is

based on their technical service centre's statistics on service life in the

market and complaints.

Name	Value	Unit
Life Span according to the manufacturer	20	а

Operational energy use (B6) and Operational water use (B7)

Name	Value	Unit
Water consumption	53.4	m ³
Energy demand	2486	kWh

End of life (C1-C4)

Name	Value	Unit
Collected separately waste type	1.722	kg
Recycling	1.236	kg
Energy recovery	0.4	kg
Landfilling	0.087	kg

Reuse, recovery and/or recycling potentials (D), relevant scenario information $% \left(\mathbf{D}\right) =\left(\mathbf{D}\right)$

The energy generated from energy recovery as well as recycled materials are assigned to module D as possible potentials or avoided loads in subsequent systems. Credits are only given for the primary portion of the inputs.

5. LCA: Results

The following

table shows the result of the LCA for 1 piece of an average basin faucet. The

results in the B-module are based on a lifetime of 20 years. Scenario B6/1 shows the result for the use of a gas low temperature boiler. Scenario B6/2 shows the result for the use of an electric instantaneous water heater.

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE OR INDICATOR NOT DECLARED; MNR = MODULE NOT RELEVANT)

- MODULE NOT RELEVANT)																	
Product stage			age		ruction s stage			U	lse stag	e	E	End of li	Benefits and loads beyond the system boundaries				
	Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
	A1	A2	А3	A4	A5	B1	B2	B3	B4	B5	В6	B7	C1	C2	C3	C4	D
	Х	Χ	Х	X	X	Х	Х	Χ	Х	Х	Х	X	Х	Х	Х	Χ	X

RESULTS (RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 piece average basin faucet incl. packaging																
Parameter	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6/1	B6/2	B7	C1	C2	C3	C4	D
GWP-total	kg CO ₂ eq	5.75E +00	2.04E- 01	6.38E- 01	0	2.59E +01	0	0	0	6.64E +02	9.89E +02	3.16E +01	0	2.93E- 02	8.53E- 01	4.6E-03	-3.52E +00
GWP-fossil	kg CO ₂ eq	6.3E+00	2.03E- 01	6.98E- 02	0	1.99E +01	0	0	0	6.64E +02	9.88E +02	3.16E +01	0	2.91E- 02	8.53E- 01	4.6E-03	-2.95E +00
GWP- biogenic	kg CO ₂ eq	-5.68E- 01	0	5.68E- 01	0	0	0	0	0	0	0	0	0	0	0	0	-5.58E- 01
GWP-luluc	kg CO ₂ eq	1.43E-02	6.55E- 04	8.14E- 05	0	6.02E +00	0	0	0	3.36E- 02	1.4E+00	2.56E- 02	0	2.39E- 04	9.26E- 05	4.38E- 06	-8.85E- 03
ODP	kg CFC11 eq	1.03E-08	2.84E- 17	3.27E- 16	0	1.09E- 06	0	0	0	2.39E- 13	2.37E-11	2.99E- 13	0	5.77E- 18	8.31E-11	1.08E- 17	-1.15E- 08
AP	mol H ⁺ eq	6.1E-02	4.66E- 03	8.05E- 05	0	6.72E- 02	0	0	0	4.07E- 01	2.06E +00	7.78E- 02	0	4.88E- 05	1.86E- 04	1.44E- 05	-3.55E- 02
EP- freshwater	kg P eq	3.78E-05	2.65E- 07	1.3E-07	0	6.12E- 04	0	0	0	6.06E- 05	2.65E- 03	3.37E- 02	0	8.68E- 08	1.46E- 07	2.3E-07	-1.13E- 05
EP-marine	kg N eq	7.85E-03	1.25E- 03	2.07E- 05	0	1.53E- 02	0	0	0	1.73E- 01	4.88E- 01	1.48E- 01	0	1.92E- 05	5.98E- 05	3.64E- 06	-3.75E- 03
EP-terrestrial	mol N eq	8.34E-02	1.37E- 02	2.44E- 04	0	1.83E- 01	0	0	0	1.89E +00	5.13E +00	2.33E- 01	0	2.2E-04	8.18E- 04	3.86E- 05	-3.98E- 02
POCP	kg NMVOC eq	2.32E-02	3.47E- 03	6.5E-05	0	6.09E- 02	0	0	0	5.05E- 01	1.33E +00	5.96E- 02	0	4.36E- 05	1.61E- 04	1.14E- 05	-1.14E- 02
ADPE	kg Sb eq	2.86E-03	1.08E- 08	5.87E- 09	0	2.36E- 05	0	0	0	3.57E- 05	2.91E- 04	4.13E- 06	0	2.59E- 09	1.41E- 08	3.14E- 10	-2.12E- 03
ADPF	MJ	9.44E +01	2.56E +00	7.88E- 01	0	4.56E +02	0	0	0	1.14E +04	1.76E +04	3.26E +02	0	3.89E- 01	6.23E- 01	6.61E- 02	-3.45E +01
WDP	m ³ world eq deprived	9.09E +00	9.29E- 04	1.07E- 02	0	6.96E +00	0	0	0	1.74E +00	1.59E +02	9.74E +00	0	2.71E- 04	8.52E- 02	-5E-05	-6.45E +00

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential)

RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 piece average basin																	
faucet incl.	packa	ging															
Parameter	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6/1	B6/2	B7	C1	C2	C3	C4	D
PERE	MJ	1.74E +01	6.63E-02	6.57E +00	0	9.4E+01	0	0	0	9.91E +01	8.1E+03	9.59E +01	0	2.24E-02	2.82E-01	4.8E-03	-1.09E +01
PERM	MJ	6.47E +00	0	-6.47E +00	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	MJ	2.39E +01	6.63E-02	9.38E-02	0	9.4E+01	0	0	0	9.91E +01	8.1E+03	9.59E +01	0	2.24E-02	2.82E-01	4.8E-03	-1.09E +01
PENRE	MJ	8.11E +01	2.56E +00	1.9E+00	0	4.56E +02	0	0	0	1.14E +04	1.76E +04	3.26E +02	0	3.91E-01	1.23E +01	6.82E-01	-3.46E +01
PENRM	MJ	1.34E +01	0	-1.11E +00	0	0	0	0	0	0	0	0	0	0	-1.17E +01	-6.15E- 01	0
PENRT	MJ	9.45E +01	2.56E +00	7.89E-01	0	4.56E +02	0	0	0	1.14E +04	1.76E +04	3.26E +02	0	3.91E-01	6.23E-01	6.62E-02	-3.46E +01
SM	kg	8.15E-01	0	0	0	2.46E-03	0	0	0	0	0	0	0	0	0	0	9.4E-01
RSF	MJ	5.64E-25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-4.73E- 25

NRSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m ³	2.12E-01	7.84E-05	2.94E-04	0	1.63E-01	0	0	0	1.11E-01	7.89E +00	2.78E-01	0	2.56E-05	2.11E-03	7.74E-07	-1.45E- 01

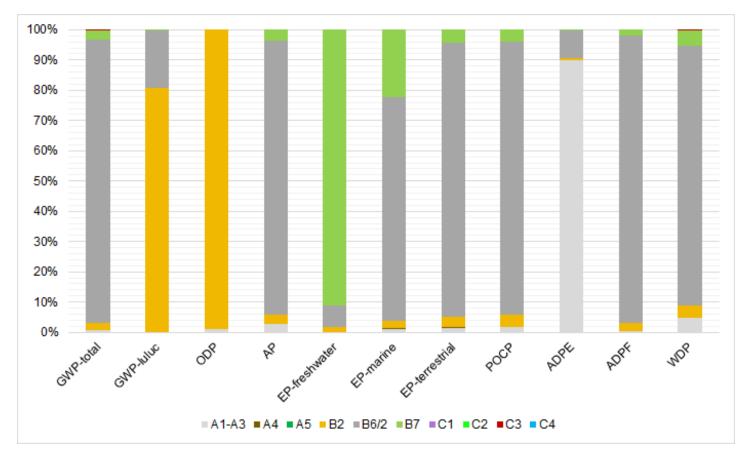
PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 piece average basin faucet incl. packaging

Parameter	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6/1	B6/2	B7	C1	C2	C3	C4	D
HWD	kg	1.88E-06	6.78E-11	6.77E-11	0	8.5E-03	0	0	0	2.13E-06	4.65E-06	6.7E-08	0	2.06E-11	1.73E-10	1.17E-11	-1.26E- 05
NHWD	kg	1.12E +00	3.17E-04	3.28E-03	0	6.97E-01	0	0	0	1.5E+00	1.25E +01	5.2E+01	0	6.13E-05	5.2E-02	8.6E-02	-7.2E-01
RWD	kg	2.93E-03	3.6E-06	1.75E-05	0	4.21E-03	0	0	0	2.52E-02	2.62E +00	2.67E-02	0	7.08E-07	3.97E-05	7.58E-07	-1.63E- 03
CRU	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	3.65E-01	0	1.83E-03	0	0	0	0	0	0	0	0	1.24E +00	0	0
MER	kg	0	0	0	0	9.01E-04	0	0	0	0	0	0	0	0	0	0	0
EEE	MJ	1.28E-01	0	1.57E-01	0	1.58E-01	0	0	0	0	0	0	0	0	2.56E-02	2.57E-04	0
EET	MJ	3.94E-01	0	2.82E-01	0	2.87E-01	0	0	0	0	0	0	0	0	4.8E-02	0	0

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy

RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional: 1 piece average basin faucet incl. packaging


· proce are rage rate in traces men parenaging																	
Parameter	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6/1	B6/2	B7	C1	C2	C3	C4	D
PM	Disease incidence	6.02E- 07	7.83E- 08	5.17E- 10	0	3.32E- 06	0	0	0	2.83E- 06	1.73E- 05	8.75E- 07	0	3.05E- 10	1.65E- 09	1.53E- 10	-3.36E- 07
IR	kBq U235 eq	1.4E+00	5.2E-04	2.36E- 03	0	2.15E +00	0	0	0	4E+00	4.3E+02	4.21E +00	0	1.04E- 04	4.03E- 03	1.09E- 04	-1.09E +00
ETP-fw	CTUe	9.52E +01	1.87E +00	4.96E- 01	0	2.05E +02	0	0	0	1.56E +02	7.39E +03	4.6E+03	0	2.89E- 01	4.03E- 01	3.11E-02	-2.91E +01
HTP-c	CTUh	1.3E-07	3.61E-11	1.12E-11	0	2.72E- 08	0	0	0	3.33E- 08	2.09E- 07	1.56E- 07	0	5.84E- 12	1.54E-11	2.42E- 12	-7.01E- 09
HTP-nc	CTUh	3.95E- 07	1.79E- 09	4.96E- 10	0	7.59E- 07	0	0	0	3.52E- 06	7.9E-06	1.61E- 05	0	3.11E-10	1.15E- 09	2.31E- 10	-2.31E- 07
SQP	SQP	4.69E +01	3.69E- 01	1.01E- 01	0	3.18E +02	0	0	0	6.63E +01	5.55E +03	1.61E +02	0	1.34E- 01	2.4E-01	4.8E-03	-2.85E +01

PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index

Disclaimer 1 – for the indicator "Potential Human exposure efficiency relative to U235". This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure or radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 – for the indicators "abiotic depletion potential for non-fossil resources", "abiotic depletion potential for fossil resources", "water (user) deprivation potential, deprivation-weighted water consumption", "potential comparative toxic unit for ecosystems", "potential comparative toxic unit for humans – cancerogenic", "Potential comparative toxic unit for humans – not cancerogenic", "potential soil quality index". The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high as there is limited experience with the indicator.

6. LCA: Interpretation

The dominance analysis shows that

modules B2, B6 and B7 are the dominant life cycle stages in most of the

categories. The contribution of B2 is due to the demand of soap and water for

cleaning. Module B6 dominates most of the indicators due to the energy demand

for water heating and module B7 has a high contribution to

due to the wastewater treatment. The module A1-A3 has a very low contribution

to all categories except of ADPE. In this indicator the provision of brass has

the largest contribution.

The end-of-life stage has no significant influence on the environmental indicators.

The environmental burdens from the

transports (modules A4 and C2) account for less than 1% of the total burdens of

the respective indicators in all cases.

The possible potentials of avoided

loads of subsequent systems (module D) lie outside the considered system

boundaries and relate exclusively to credits from recycling and thermal

recycling by means of incineration with energy recovery of the different

materials.

3,050,479 basin faucets of 405

different product types were produced. For the assessment of the variability of

the results, all products were balanced and compared to the average product

weighted by production volume.

The different types of products all

have the same function and differ mainly in terms of design, which has an

influence on construction and materials used. The basic structure of the

product types is always similar. Material type and quantity proportions do not

differ much, as also shown in the average material composition table.

The deviation of the GWP fossil in

modules A1-C4 has a maximum of 90% and a minimum of -60% with scenario B6/1

(gas low temperature boiler). The variation of the GWP fossil in modules A1-C4

has a maximum of 91% and a minimum of -61% with scenario B6/2 (electric

instantaneous water heater).

For an average scenario, where 50%

of water is heated with gas low temperature boiler and 50% with electric

instantaneous water heater, 2% of the basin faucets produced are above the

average GWP fossil value. Whereas 98% reflect the average or are lower than the average.

Modules

B6 and B7 account for more than 90% of the GWP indicator. The deviation from

the average is mainly caused by the flow rate in module B7. The higher the

deviation from the average GWP, the higher the flow rate. The flow rate ranges

between 1.9 and 9.7 l/min. Consequently, the production phase has a minor

influence on the LCA results.

7. Requisite evidence

The drinking

water regulation determines the quality of drinking water at the point of

withdrawal. This result in requirements for used materials in drinking water

installations in general and therefore in sanitary fittings in particular.

All materials

used by Hansgrohe SE, which are in contact with drinking water, fulfill the drinking water regulation.

Regulations for metals (Europe-wide):

- Acceptance of metallic materials used for products in contact with drinking water: 4MS Common Approach
- Part A Procedure for the acceptance
- Part B 4MS Common Composition List
 - Metal recommendation of the federal environment agency: metal materials suitable for drinking water hygiene

Regulations for other materials (Germany):

- KTW: Assessment basis for plastics and other organic materials in contact with drinking water
- Elastomer guideline: Guideline for the hygienic assessment of elastomers in contact with drinking water
- Thermoplastic elastomers: Recommendation for the hygienic assessment of products made of thermoplastic elastomers in contact with drinking water (TPE transition recommendation)
- Ceramics: draft assessment basis for enamels and ceramic materials: assessment basis for enamels and ceramic materials in contact with drinking water (enamel/ceramic
- contact with drinking water (enamel/ceramic assessment basis)
- Lubricants: Guideline for the hygienic assessment of lubricants in contact with drinking water (sanitary lubricants), (Lubricant Guideline)

Regulation for other materials (France):

 ACS: Attestation de Conformité Sanitaire (plastics, elastomers, metals)

Regulation for other materials (UK):

 BS 69 20: Suitability of non-metallic products for use in contact with water intended for human consumption with regard to their effect on the quality of water (plastics, elastomers)

Products of the

Hansgrohe SE are therefore uncritical to use with any drinking water.

8. References

Standards

EN 200

EN 200:2008: Sanitary tapware – Single taps and combination taps for water supply systems of type 1 and type 2

EN 816

EN 816:2017: Sanitary tapware – Automatic shut-off valves PN 10

EN 817

EN 817:2008: Sanitary tapware – Mechanical mixing valves (PN 10)

ISO 3822

ISO 3822: Acoustics – Laboratory tests on noise emission from appliances and equipment used in water supply installations

DIN 4102-1

DIN 4102-1: Fire behaviour of building materials and building components - Part 1: Building materials; concepts, requirements and tests. 1998-05

DIN EN ISO 9001

DIN EN ISO 9001:2015: Quality management systems -

Requirements (ISO 9001:2015)

DIN EN 13501-1

DIN EN 13501-1:2019-05: Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests; German version EN 13501-1:2018

DIN EN ISO 14001

DIN EN ISO 14001:2015, Environmental management systems

— Requirements with guidance for use, 2015-09

DIN EN ISO 14025

DIN EN ISO 14025: Environmental labels and declarations - Type III environmental declarations - Principles and procedures, 2011-10

EN 15091

EN 15091:2014: Sanitary tapware – Electronic opening and closing sanitary tapware

EN 15804

DIN EN 15804:2012+A2:2019+AC:2021: Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products

DIN EN ISO 45001

DIN EN ISO 45001:2018: Occupational health and safety management systems — Requirements with guidance for use. 2018-03

DIN EN ISO 50001

DIN EN ISO 50001:2018: Energy management systems — Requirements with guidance for use. 2018-08

EN 60335

EN 60335-1:2012: Household and similar electrical appliances - Safety - Part 1 Sanitary tapware – Thermostatic mixing valves (PN 10)

Further References

AVV

Draft General administrative provision relating to the Order on the European list of wastes (Waste List Order – German designation: AVV) of 10 December 2001.

ECHA

European Chemicals Agency (ECHA) Candidate List of Substances of Very High Concern (SVHC) for Authorisation https://echa.europa.eu/de/candidate-listtable

Ecoinvent

ecoinvent 3.6 Database on Life Cycle Inventories (Life Cycle Inventory data), ecoinvent Association, Zürich, 2020

EU Ordinance on biocide Products No. 528/2012

European Parliament, 2012. Regulation (EU) no 528/2012 of the European parliament and of the council of 22 May 2012 concerning the making available on the market and use of biocidal products

Eurostat

Eurostat, last update 26/10/2021 on https://ec.europa.eu/eurostat/databrowser/view/ten00063/default/table?ang=en

GaBi

GaBi 10.6, GaBi Software System and Database for Life Cycle Engineering version 2021.2, Sphera Solutions GmbH, Leinfelden-Echterdingen, 1992-2021

IBU 2021

General Instructions for the EPD programme of Institut Bauen und Umwelt e.V. Version 2.0, Berlin: Institut Bauen und Umwelt e.V., 2021, www.ibu-epd.com

PCR Part A

Institut Bauen und Umwelt e.V. (IBU), Product Category Rules for Building-Related Products and Services. Part A: Calculation rules for the life cycle assessment and requirements on the project report. Version 2.1, Berlin, 11/2021

PCR Part B

Institut Bauen und Umwelt e.V. (IBU), Requirements on the EPD for fittings and showers. Version 1.1, Berlin, 03/2022

Thünen Institute

Diestel, Sylvia / Weimar, Holger: Der Kohlenstoffgehalt in Holz- und Papierprodukten - Herleitung und Umrechnungsfaktoren. Thünen Working Paper 38. Johann Heinrich von Thünen-Institut. Hamburg, 2014 The literature referred to in the Environmental Product Declaration must be listed in full.Standards already fully quoted in the EPD do not need to be listed here again. The current version of PCR Part A and PCR Part B of the PCR document on which they are based must be referenced.

Publisher

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Author of the Life Cycle Assessment

brands & values GmbH Altenwall 14 28195 Bremen Germany

Owner of the Declaration

+49 421 70 90 84 33 info@brandsandvalues.com www.brandsandvalues.com

AXOR

hansgrohe

Hansgrohe Group Auestr. 5-9 77761 Schiltach Germany +49 7836 51-0 info@hansgrohe-group.com www.hansgrohe-group.com